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THE USE OF LYAPUNOV'S SECOND METHOD TO ESTIMATE REGIONS OF 
STABILITY AND ATTRACTION* 

V.G VERETENNIKOV and V.V. ZAITSEV 

A definition of the stability region is given by extending the properties 
of Lyapunov's definition of sets of sizable measure. Constructive theorems 
on estimates of regions of stability and attraction are obtained by using 
certain developments of Lyapunov's second method for a wide class of auto- 
nomous and non-autonomous systems that satisfy both the Lipschitz and 
discontinuous conditions. The usual requirements imposed on the functions 
used in investigations of the stability region are somewhat reduced. For 
example, the requirement that the functions and their derivatives should 
have fixed sign are omitted. 

1. Consider the equations of perturbed motion of the form 

x' = i (I, t), .r E I?" (1.1) - (I.$) 

By system (1.1) we mean an autonomous system, whose right side is f(x), whose vector function 

f (5) is such that the solution of the Cauchy problem in the region considered exists, is 
unique, and is continuous with respect to the initial conditions, excluding any arbitrarily 
small neighbourhood of singular points. For system (1.2) j =f(z)=C(R") and by Peano's 
theorem the integral curves can be continued to the boundary of any compact set, possibly in 
a non-unique way. In system (1.3) the single-valued vector function f = f(.r) is piecewise 
continuous. Among systems (1.3) with discontinuous single-valued right sides only those are 
considered for which each integral curve may be uniquely continued in the neighbourhood of any 
surface of discontinuity, and the number of such surfaces is finite. The vector function 

f=f(r, t) in system (1.4) is such that the solutions retain the properties of the solutions 
of system (1.1) mentioned above. 

The basic concepts and notation correspond to those used in /l/. In addition we shall 
introduce the upper right Dini derivative /2, 3/ denoted by D+V; the connected subset F of 
the semiaxis IlO,oo) such that p = [t,, Tl V [to, oo) (T = const) (when investigating the properties 

of attraction I; = It,, CO)), F,” = (x 1 V (x) = d); H$l =- (~1 z = Y (1, to, lo) A toe H”t ‘( “) = H,’ = {* i Ls (x) z-1 

c,)), c,, = const, and the integral curve y(t,tO, x,,) of the system considered under initial con- 
ditions zO, t,,. 

Let us assume that for the Lyapunov function c',zc' the following conditions are satis- 

fied: 
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(1.5) 

(Vx E R” \ 8) 1. (x) > 0, 1’ (0) = 0 (1.6) 

It is most convenientto evaluate the stability region as the set H,‘.. However, when 

conditions (1.5) and (1.6) are satisfied and the Lyapunovtheoremon stability holds, it follows 
only that some stability region, not necessarily the same as Hc', exists. 

For instance, a system of the form (1.1) may exist, which on some surface FC,Y has 

singular points. It is possible to construct for such system a Lyapunov function v for which 

the set Fc,' is the level surface. The behaviopr of this function is similar to that shown 

in Fig.1, where z= $zi'. 
i-1 

(Vx E. I?” \ 0 \ F,,Y) V’ (4 < 0. 

with the function g = g (2) 
the function g= -z*+zr& 

In that case (VIE Fc,')V.(Z)=O and system (1.1) may be such that 

For example, when II= 2 for the system 

2' = -g (2)X, I/' = -g (z)1/, z = z* + II' 

whose behaviour is defined by the curve in Fig.2 (a possible one is 
when the Lyapunov function is V= c--(1 -c-"~), where 0 = ln2/r,, r. = 

erg, [V (2) = c,], the region He,"(c>cI) is not a stability region. This situation also arises 
when the surface Fc," is a limiting cycle of system (1.1). 

V 

I L!c 1 
i z 

5: 

Y 

b z 

ro 

Fig.1 Fig.2 

Even if the Lyapunov function V(aj satisfies the condition 

(BC>O) (Vz E H,"\fl) V.(z)<0 

the set H,' may not only not be the region of attraction but also a region of stability /4/. 
In this case the measure mess,, of the set, where the right side of the system f(r)efY, is 
zero. 

Similarly for a system of the form (1.31, when the condition 

(Vs E &v\e) D+v(z)<o (1.7) 

is aatisfied, the set H,'. is not necessarily a stability region. It was shown in /5, 6/ that 
for systems of the form (1.4) the set H," when condition (1.7) is satisfied, is not necessar- 
ily a region of attraction. 

To estimate the regions of stability and attraction we introduce special Lyapunov func- 
tions. 

Definition 1. We shall call the function v(x) that, on the set GEK, satisfies 
conditions (2.2), l"-4' and 6’-8” of /l/ and, also, condition (1.6) stated above, a 
Lyapunov-type function. 

Definition 2. We shall call a function that is of the Lyapunov type on any subset G, E K 
in the region of definition V(5), a strictly Lyapunov-type function. 

We shall also consider Lyapunov-type functions (and strictly Lyapunov-type functions) 
in a wider class of sets. If the Lyapunov-type function t'(t) is defined on each of the sets 
G, (i = 1. 2.. ..lGi~h’ such that limG,=G as i-00, then V(z) on G is defined as a function 
obtained by continuous continuation on the sequence {Gil. 

The function V(z), shown in Fig.3, is not of the strictly Lyapunov type, since it is not 
a Lyapunov-type function on the set G,. 

Condition (1.6) is not obligatory for Lyapunov-type functions v (2). It is sufficient 
to stipulate that the function r'(z) should have its absolute minimum at the point 13. 

For functions of the strictly Lyapunov type, condition (1.6) may be replaced by the 
requirement that 

tl = arg min V(z) - arg lot min 
*IDI. r=D 

- 1 
V (2) = arg abs lot n&V(z) 

whereD,is the region of definition of the function v, and 8 is the point of the unique local 
minimum that coincides with the global minimum. 
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Note that according to the theory of convex functions /7/, properties (2.2) 40 and 80 in 
/I/ for functions of the strictly Lyapunov type are Satisfied, if the functions are strictly 
convex or strictly quasiconvex. 

It follows from Definition 1 that functions of the Lyapunov type nay be defined by level 
surfaces and an arbitrary strictly monotonic function R+* -R+' defined on an arbitrary curve 
that intersects the level surfaces only at a single point. 

The level surfaces of the Lyapunov-type functions are the boundaries of regions, and fcr 
various values of V(z) satisfy the following properties (the L properties) : they do not 
intersect, or touch each other, they contract to a point 0, 
zero, and fill the whole set. 

are of measure (mesRJ, equal to 

Fig.3 

of the form 

Any Lyapunov function is a Lyapunov-type function in any, 
possibly small, neighbourhood of 8. However the latter is not at 
all. obligatory for the whole of the region of definition, although 
it is possible to separate among the Lyapunov functions a class of 
Lyapunov type functions, for example, positive definite quadratic 
forms that are functions of the strictly Lyapunov type. 

The Lyapunov functions that satisfy the Krasovskii-Barbashin 
theorem on stability as a whole, are also Lyapunov-type functions 
(not necessarily strictly). 

In investigations of stability as a whole tie property of an 
infinitely large Limit is not obl.igatory for Lyapunov-type functions. 

The many Lyapunov functions used in the theory of stability 
/3-6, a-21,' are not functions of the Lyapunov type in the whole 
region of definition. Thus Lyapunov functions that contain terms 

where (p(z) is not a Lyapunov type function, as well as Lyapunov functions with various combina- 
tions of integrals of non-finearities are not necessarily functions of the tyapunov type_ 

Lyapunov-type functions were used in /1/ to investigate the stability of compact sets. 
If, however, the set is not bounded, the level surfaces of the Lyapunov-type functions accord- 
ing to the construction algorithm, as defined by the lemma in /I/, are not closed. In that 
sense Lyapunov-type functions may not be Lyapunov functions that have closed level surfaces. 

Later, we shall consider only functions of the strictly Lyapunov type, which for simplicity 
will be called functions of the Lyapunov type. 

Lemma 1. Let Lyapunovtype function V(z)= Cl exist. Then fox the integral curves of 
system (1.1) the following statements hold: 

from the condition 

(VC, c, :c > Cl > I,) (V.r E H,V ‘\ H,,“) v’ is) < 0 

it follows that 

(Vr, E H,“ \ H,,? 3 f!ir x (t, t,, xo) E H,,' 

from the condition 

(Vc, cl:c > c1 > 0) (Vx c Hov \ int H,") v' (x) < 0 

it follows that 

and from the condition 

it follows that 

The proof of the lemma is obvious. 
The properties that follow from Lemma 1 are, as a rule, required to solve various applied 

problems. 
Note thftt, when Lyapunov-type functions are used, problems of stability in-the-small are 

investigated by a single procedure with finite regions of stability, as a whole and also on 
sets /l/. 

Let us now introduce the definition of the region of stability. It follows from the 

Lyapunov definition of stability that for stable solutions the property 

(XE,)(VP <<eo,(116) ) ' 0 (V.X iln) E intSg)=+ (Vt C F) 5 (t, 10, zO)E irl(l.S, 
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is satisfied. 
To solve systems (1.1) and (1.4) for any E> 0 a &I,, exists which has such a property 

for a fixed E. We select a fairly small eC e 0 and consider the one-to-one correspondence 

Se-Sbm.x. If in the respective region the system is stable, and if we continuously increase 

e, the corresponding 6m,, also increases continuously. The stability boundary is determined 

by the breakdown of the one-to-one correspondence S.(t)+ Sbmax (t). 

When this correspondence is satisfied, there exist in the stability region according to 
Nemytskii classification /lg/, singular points of the type of centres, generalized centres, or 
centrofocal points. 

The violation of correspondence in the 6 neighbourhood of some 
connectedness of the set of w-limiting points for points from 6. 
of the set of o-limiting points for points of the set GE K does 
stability region. 

Definition 3. We call the set of surfaces {Q} =Q that cover 
satisfies the properties II on G. 

surface, results in mutli- 
Such multiconnectedness 
not impy that G is not a 

the set GEK, if set Q 

Definition 4. We call the set D,, (t): (Vt E F) [D, (t)=D, /j Do (t), D, E Kl the stability 

region, and call the system stable on Do, if there exists a set of surfaces Q(t) covering 
D,(t) such that the integral curves for V~EF do not emerge from Do(t) and, also, 

(Vt EF) (VP E Q (t))(WG Q (t))intlrl C i&B 

(V~TSCg~intrC1)~(Vt~~)+(r, t, zo)Eintlfi r\ 

((Vh fh E Q 0)) intIP c intl Be A intl I% ZJ intl PI) =+ 
(Zl%, %E Q(t))(tr%~Q(t)) intl~lcintl~aCintl9aA 
int1*~~int,$~(31so, ~int~8)(3r>1)t(z, t, zO) g intlfh 

Note that in the Definition 4 instead of S,,Sb a more general form of sets is used, 
namely, the surfaces p,II, that are time independent; the set Q depends on time, since the 
region boundary may depend on time; the setD,is independent of time. 

Note that when the system has a region of stability, the solution 5 = 0 is Lyapunov 
stable. 

Definition 5. We callD,the attraction region, if it is a stability region and the 
system has the property of attraction on D,. 

Lemma 2. Systems (l.l)-(1.4) are stable on the set Do, ifandonly if the correspondence 

B-%aX is satisfied on the whole set Do. Here B ad hPmax are the respective surfaces in 

Definition 4. 

Proof of necessity. If the system is stable on Do, then (Ug E Q)(39) is such that 0%: 
iat,& cint# A & # B) is the corresponding surface +I c int,rp. The integral curves that begin in 

intp, do not reach fi. On the other hand, 

0% E Q: iW6 3 i&b A fM- B)(3%) 
is such that integral curves belonging in Qn at some instant of time, and do not belong to the 
set int, fi, exist. Thus the correspondence fi -pm,, occurs. 

The proof of sufficiency is obvious. 

2. Let us consider a number of theorems on the evaluation of regions of stability and 
attraction. 

Theorem 1. a) Let a Lyapunov-type function v(z) exist such that the condition (1.5) 
(1; (I) E Cl), required to solve systems (l.l)-_(1.4), or the condition 

(Vs E H:) D+ V (x) Q 0 (2.0 

is satisfied. Then H,' is the region of stability. 
b) Let there be a Lyapunov-type function v(x) such that for solving systems (1.1) and 

(1.2) condition (1.7) is satisfied, or when P'(z)= Cl the condition 

(Vz E HY \ e) v'(2) < 0 (2.2) 

is satisfied. Then Hr is the region of attraction. 
If for systems (1.3) condition (1.7) is satisfied, 

discontinuity surface, the inequality 

0's: E 6 (S)) D+V (4 < -B < 0 

holds, then Hy is the region of attraction. 

Proof. From condition (2.1) and the properties of 

and in some neighbourhood 6 (S) of any 

(p = const) 

Lyapunov-type functions it follows 
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that the integral curves cannot intersect the level surfaces in the direction from inside to 
outside. This shows that the set HF is a region of stability. 

To prove the property of attraction we select an arbitrary point x,~ Hy and consider 
the function v(z(t,to,rO)) = a(t). By condition (1.7) Q,(t) (t 3 t,,) is a decreasing function. 
By the theorem on the derivative of a monotonic function /3/-we-have 

where the function @ 
For any sequence 

is defined almost everywhere and q(l) is a decreasing function. 

&J* where every tj is taken from the region of definition of @'such 
-.. that. lim,,, tj = 00, the conalta.on 

l&,,, DC@ (t,) = 0 (2.4) 

is satisfied. 
Let us assume the opposite, i.e. that 

&lj_._J)++3 (fj) = ---CL < u (a = const) 

Then the sequence (tji): limfi _ m tji = 00 exists for which D*@ (fji) < --n. + E < o (e = coast\ for 

fairly large number ii. Then also the function CD-is such that O'(tji)< -a T ~(0, and the 
inequality 

Q‘ (tji) < --IL + e + E% < 0 (rX = eonst) 

holds almost everywhere in some neighbourhood of the point tii. Since the behaviour of the 
function on the set of zero measure does not affect the Lebesgue integral, the first term on 
the right side of (2.3) decreases without limit as t increases. Hence a finite time T: T>t, 
and Q, (T)<O exist. But this is impossible. Consequently, for any sequence (tj} selected 
outside some set of zero measure (the Lebesgue measure) the condition (2.41 holds. 

Condition (2.4) means that J ftj, t,, tD) -) 8 for solutions of systems (1.1) and (1.2) since 
D-V(x) = 0 only at the point 5 = e. 

The proof given above also holds for solutions of (1.31, since by the condition of the 
theorem there are no w-limiting points on each of the surfaces of discontinuity. 

Theorem 1 does not apply to systems of the form (1.2) -(1.4) for evaluating the stability 
regions, if instead of functions of the Lyapunov type we take Lyapunov functions to which 
Definitions L and 2 do not apply. 

Theorem 2. Let there be a function of the Lyapunov type v(r)~ C' such that for solu- 
tions of systems (1.1) and (1.2) conditions (1.5) are satisfied and for some function of the 
Lyapunov-type W(X)E C’ the condition W*(z)+ 0 (VIE M) is satisfied on the set n-r = {.r / 

Ir (x) = 0) . Then Hr is the region of attraction. 

Proof. Let there be an w-limiting set ac(H,v) for points from HGv'. It can be shown 

that by virtue of conditions (1.5) %+ (H,') can only be a subset of M. The proof that the set 
M does not contain o-limiting points can be obtained in the same way as the proof of the 
property of attraction in Theorem 1. 

Theorem 2 is an extension of the theorem of Krasovskii-Barbashin /5, 8/ on systems (1.2) 
in the form used in /3/ for investigating the properties of weak attraCtiOn. 

Theorem 3. Let Lyapunov-type functions V(Z}E Cl and Y,(x) such that for solutions of 

system (1.4) the condition 

(VZEH>\8) o>-v,(z)).=&y-(I) (2.5) 

is satisfied. Then NcY is a region of attraction. 

Proof. According to Theorem 1 the system considered here is stable. Let us select an 

arbitrary xg fN,V. Sy virtue of the properties of solutions of system (1.4) we have v (x @, 

t,, %)I c- ct m 
Let us assume the contrary, i.e. that the integral curve x(t, tO,sO) does not reach some 

level surface i',: (O-Cc, Q V(Z~).<C). Then 

v (x (h t,, so)) - v (x0) = 5 t” (r, t,, x,) dr (2.6) 
f” 

We put mas r',(z) =n(a >. (1) and from (2.6) we obtain 
X.Gil,,l' 

v (r (t, t,,, J0)) < --n (t - to) f v (10) 
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where the first term on the right side decreases without limit as t increases. Hence for an 

arbitrary cr :c;; Cl>. 0 there j.s a finite time T at which all integral curves beginning in 
HcV become Hc,l'. From this follows the property of attraction. 

Theorem 3 holds when condition (l-5), or (2.1) is satisfied, and condition (2.5) is 

satisfied beginning at some T< oo(Vt> T). This theorem also holds if in condition (2.5) 
the upper right Dini's derivative is used. 

Let us consider some corollaries of Theorem 3. 

Corollary I.. Suppose Lyapunov-type functions V(z) and V, (5) exist, such that condition 
(2.1) is satisfied, and there is a measurable set F1 consisting of a finite or denumerable 
number of intervals for which 

a) (3M: 00 >M> 0) messlF1< M 

b) o> -v, (x)& sup ~+V(Z) 
F\F, 

Then HGv is a region of attraction for (1.41. 

Corollary 2. If Lyapunov-type functions V(z), VI(z), and V,(z) and sets F, and F, con- 
sisting of denumerable intervals exist, such that: 

a) F=F,IJF,, 

b1 (Vi) (VC,, dg : [C,, d,I C I;;) (BUM, by : [a,, biI C Fs I\ ~i > di /\ 

b, - Qi 2 4 - e,) I(%+, > 4 =+ @i,l > 4 A {le,, &+,I n 
Icl* d*l = Cs + la,7 bil jl Iai+17 bj+%l = 55) f/t 

c) /\ {(Vs f KV) 0 > -VI (4 2 ,_qloax*,,D*V (4) A 
L- I’ 1 I 

d) A ((Vt E H,' \ 8) max D+V(x)< V, (r)) 
taci~~if, 

el (Vx f He’) Vl (4 > V, (4 , 

arid also 

(Vz E HP) 0.t E F) (3L: 0 6 L < 00) Cf (ST, t) I< L (3.7) 

then the set Hdv C Hev for which (WE F) I&C HCy: co&,) =d is the region of attraction. 

Corollaries 1 and 2 enable us to waive not only the requirement for the functions them- 
selves to be of fixed sign, but also their derivatives. 

Corollary 3. If the right sides of system (1.4) satisfy conditions (2.7) and there are 
Lyapunov-type functions V(x), I’, (2)~ C1 and a continuous function 11 (1) such that (vt E P) 
(VxEHc") v' (z) < q(t)II,(x) and, moreover, one of conditions: 

a) (vt E F) 11 (0 < 0 r\ limt,,q (t) CO, 

b) (vtEF)l'l(f)l<M<m/\(VtEF\F,:mesRIFI <M,<m)q(t)<o, 

c) O’t E F) 1’1 (2) I CM< M A lirnt,,,q (t) = ~(0, 

d) (3 {I",): v [Ti, Ti+l]=FT i=l,Z, a e e 9 /\Tl= t,/\(Vi)Ti+,- 

Ti,<~<~)~(VtEF)Irl(t)/<M<~I\(3q>O)p<zM~ 
a@) (Vz 3 H,") nV(z) > v, (x) I 

end 

(WEIT,, Ti,,]) (Vxc=H:)~~,'(x)~ < =+ /j 
Ti+l 

'1Wdt<--<O/"\l<k< d::,, (2.8) 

are satisfied, then for a) the set I&v is the region of attraction; for b) the region of 
attraction for system (1.4) is the set Ec2v, where c1 = ckp (~.~,~~), (Vo 3 Hcv) eV (z)> V, (5); 

for the cases of c) and d) the maximum set He, y: (QtE F)k& C&V is also the region of attrac- 
tion for system (1.4). 

Proof. When condition a) is satisfied, the corollary follows from Theorems 1 and 2. 
When condition b) is satisfied, using the theorem of congruence/22/, the function V(x(t, t,,xo)) 
for solutions x(t,t,,x,) contained in the set B,v cannot according to the norm increase in 

a time interval equal to ill, more rapidly than the solutions of equations y'= nMy. Then 

y = y (0) exp IfzM (t - toN < Y (0) exp (UaMhf,) 

We conclude from this that the corollary also holds, when condition b) is satisfied. 
The proof of the corollary when condition c) is satisfied follows from its validity when 



520 

conditons a) and b) are satisfied. 
TO prove the validity of the corollary when condition d) is satisfied we shall prove that 

the following statements hold: 
1) for any i on the segment [T(, T,+ll (ZH,,v) 

2) there is a finite T such that not a single integral curve in HclV in the time interval 

It,, Tl leaves Hex even when (Vt > T), and 
3) the set &,V cannot contain any w-limiting points, other than I = 8. 

Let us prove statement 1). By the theorem of congurnece /22/ the function vfs(t,t,,z,)) 
for z (t, t,, za) E Hcv and tG [T1, Tt+ll cannot increase more rapidly than the solution of the 
optimization problem 

SuPlllfi i/' (Y (T,+,)) 

where g(T*+,) is the solution of the differential equation y' = 17 (t)ay at the instant of time 
T ir11 Y Vi+11 = Y G”t+n Ti, ~0); YO = V (z (Ti, to, q,)) for ze E Hcv and the function 9 (t) satisfies 
the constraint (2.8). 

and, 
Hence a finite L exists such that for tE [Tf, T,+J we have V(z(t, t,, z,))< V(x,) esp L 
consequently, statement 11 holds. 
By virtue of constraint (2.8) we have in any time interval ITi, T<,I~ 

where 

The 
from the 

The 
(Vi) on 

Ai+ Ai- 

existence of some T such that the whole set HaV cannot emerge from HeV is evident 
inequality obtained. Hence statement 2) holds. 
proof of statement 3) fol.lows from the satisfaction of condition (Z-B), In fact, 
the segment [Ti, Ti+lI when Ti > T the system does not only not emerge from HnvI -_ . _. 

but for some interval of time [ti, ti+lI) the inequality n (t) < 0 for (Vt E Hi, ticl]) is Satisfied. 
Moreover that interval can be selected so that 

v (x (J'I, to, 50)) < v (z (21, to, 20)) < V (5 (Ti+l, to, 10)) 

The further proof of statement 31 and its corollary is obvious. 

3. Examples. lo. Consider a free solid body subjected to the moment of external resist- 
ance forces. On the assumptions made in /20/ we write the Euler equations in the form 

doi 
I. 7 + (Ii+2 - I*+, I wjrlui+Z = - x tt) I o la-’ wi 1 

(i = 1, 2, 3; i -j- 3 = i) 

Ti+l 

V (1: (Ti+p to, I,,)) - V (z (T,, to, 4) = s V’ dt < 

'i 

S VI,(S) 9 (t) dt + S VI(Z) tl (t) dt Q VI (2 (Ti, to, 30)) qi’k + 
..Q+ Ai- 

VI (t (Ti, to, ~0)) qi-/k = VI (5 (Ti> to, 50)) (qi”k + qi-/k) < 
[ - ‘~qr (M7 + tli-) + q~i-I vl(s (Ti, ‘0. q)) 

2wc w7 - Q) <o 

where li are the moments of inertia of the body relative to the principal central axes of 
inertia of the latter, and o1 are the projections of angular velocity of the body on the same 
axes. 

For the unperturbed motion ol= u,= o,=O. 
Consider a Lyapunov-type function of the form 

of for t&t,, the condition 
(as)(vt Gs F) x (t) 2 6 >O (3.11 

is satisfied, the system as a whole is uniformly stable. If the inequality (vi e F) x(t)>O, 

and x(t) = 0 on the set Fr such that mesHa lil<&f<~,iV= canat, the system is as a whole stable. 

When the inequality Ix(t)I<M( 00 is satisfied and outside some set F, condition (3.1) is 
satisfied and mes,,F,<M<<, the system is also as a whole stable. 
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2O. Let us investigate the stability of motion in the vertical plane of a dynamically 
and geometrically symmetric body in a fluid. The equations of perturbed motion in the case 

considered here can be represented in the form /20/ 

(I+ k,) V'= C,"V _t C,$+ C,"a+ C,Q (3.2) 

(l+ k,)a' = C,(a) + Cy% +&BB + C,"V 

(1 + k,) pz 0' = m2 (a) + m,@ o+ mtr: 8, p' = 0 

where V is the modulus of velocity, OT is the angle of attack, @ is the angle of slip, 0 is the 

angular velocity, C+"* Q, C,", Czo, C,(a), CYa. Cue, C,'. m,(c). mzo. mzp are the hydrodynamic coefficients, 

Vr is the dimensionless moment of inertia about the E axis, and k,, k,, k, are the coefficients 
of the additional apparent masses. 

The coefficients C,(a) and m,(a) can be approximated with fair accuracy by the formulas 

m,(a)= mza a + mIaa, C,(a)= Cya a + C1'*a3 

There are three singular points in the region selected for the change of hydrodynamic 
coefficients for equations (3.2). They are: the unsteady origin of coordinates, and two 
stable points symmetrical about the latter point. 

Benceforth the variables V,a,o,f~ will be denoted by xi(i=l,..., 4) respectively. Using the 

probability approach /l/, we obtained that when t=[tgl 2'1 the set Hx(xso) becomes the set 

H$# = (11 V(Z. 0)~ c,,/n (t)). The inequality 

(vrEP)(vzEe (F;$"):c(to) i= c&(V (2, a)1)(t))dO 

is then satisfied. 
Optimization of the measure of the set rj'y,t;;+?j was carried out for particular numerical 

values of the hydrodynamic coefficients of (3.2). The following results were obtained. 
When the function V(z.0) was selected in the form 

V(z, 0) = * a& (3.3) 
+a 

and values of ~i were taken from the intervals o1 ea IO, i,61,0, = 1, o,= 10, 1, ij,a, s [1,3] and c0 = 0, 12, 
the optimum function q(t) obtained on a computer with an accuracy 0.999, is given in Fig.4. 

Compared with the choice of the Lyapunov-type function of the form 

(3.4) 

and its corresponding function ~(1) (Fig.4) the change of measure of the set H,~i~~ appears 

in Fig.5, where the dependence of the ratio A= men~,,P~,,(l,lmes,B,Vlp(t, on t is shown. 

0 4 8 12 t, set 

Fig.4 Fig.5 

The curve in Fig.5 shows that the measure of set R&r, for function (3.3) has diminished 
approximately threefold in comparison with (3.4). 

We can similarly derive the function q(t) satisfying the conditions of the theorems 
formulated above and the condition 

(vc,)(vt~F)(r=En~\a~) -$-(W.&l (Q)<O 

Note that the determination of the stability region of the surface rp and $ when solving 
various applied problems provides the opportunity to analyse the evolution of sets, i.e. to 
consider the following problems: 1) to evaluate for a given set G1 the set Go, where the 
integral curves orignate that do not appear from C, in a finite time T; for a given set G, 
find the setG,in which the integral curves, that begin in G,, 
tical estimates of the attraction regions. 

remain and 3) to obtain analy- 

The solution of the second problem appears in the second example. 
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